Learning to Defer with an Uncertain Rejector via Conformal Prediction

(1)

Yizirui Fang, Eric Nalisnick Johns Hopkins University {yfang52, nalisnick}@jhu.edu

Project website

Learning to defer with one expert

Learning to defer (L2D) is a framework for human-AI collaboration that divides responsibility between machine and human decision makers. For every test instance, a 'rejector' function decides if the case should be passed to either a human or model (but not both).

Learning in L2D requires we fit both the rejector and classifier. We assume that whoever makes the prediction - model or human - incurs a loss of zero (correct) or one (incorrect). To use the rejector to toggle between the human and model, function:

• the overall classifier-rejector loss

$$L_{0-1}(h,r) = \mathbb{E}_{\mathbf{x},\mathbf{y},\mathbf{m}} \left[(1 - r(\mathbf{x})) \mathbb{I}[h(\mathbf{x}) \neq \mathbf{y}] + r(\mathbf{x}) \mathbb{I}[\mathbf{m} \neq \mathbf{y}] \right]$$

Uncertain Deferral Via Conformal Prediction

- CP framework to quantify the uncertainty in the rejector sub-component of an L2D system
- Conformal set $C_r(\mathbf{x}; \tau)$ is $\{\{0\}, \{1\}, \{0, 1\}\}$
- Ideal construction marginal guarantee

$$\mathbb{P}\left(r^*\left(\mathbf{x}_{N+1}\right) \in C_r\left(\mathbf{x}_{N+1};\tau\right)\right) \geq 1-\alpha$$

Practical construction marginal guarantee

$$\mathbb{P}\left(\mathbb{I}\left[\mathbf{m}_{N+1} = \mathbf{y}_{N+1}\right] \in C_r\left(\mathbf{x}_{N+1}; \tau\right)\right) \ge 1 - \alpha$$

 Probability parameterization that the expert will be correct OvA

$$\hat{p}(\mathbf{m} = \mathbf{y}|\mathbf{x}) = \mathbf{\Phi}[g_{K+1}(\mathbf{x})] = (1 + \exp\{-g_{K+1}(\mathbf{x})\})^{-1}$$

A-SM

 $\exp(q_{K+1}(\boldsymbol{x}))$

Bayes optimal by minimizing above loss function:

• classifier $h^*(x)$

$$h^*(oldsymbol{x}) = rgmax_{y \in \mathcal{Y}} \mathbb{P}(\mathbf{y} = y | oldsymbol{x})$$

• rejecter function $r^*(x)$

$$r^*(oldsymbol{x}) = \mathbb{I}\left[\mathbb{P}(\mathsf{m}=\mathsf{y}|oldsymbol{x}) \geq \max_{y \in \mathcal{Y}} \mathbb{P}(\mathsf{y}=y|oldsymbol{x})
ight]$$

Surrogate losses

For classifier-rejector loss function as Eq 1

• One-over-All (OvA)

• Asymmetric Softmax (A-SM)

$$egin{aligned} \psi_{ ext{A-SM}}(g_1,\ldots,g_{K+1};oldsymbol{x},y,m) &= \ &-\log \phi_{ ext{A-SM}}(g(oldsymbol{x}),y) \ &-\mathbb{I}[m
eq y] \cdot \log \left(1-\phi_{ ext{A-SM}}(g(oldsymbol{x}),K+1)
ight) \ &-\mathbb{I}[m=y] \cdot \log \phi_{ ext{A-SM}}(g(oldsymbol{x}),K+1) \end{aligned}$$

where

$$\phi_{\text{A-SM}}(g(\boldsymbol{x}), y) = \begin{cases} \frac{\exp(g_y(\boldsymbol{x}))}{\sum_{y'=1}^{K} \exp(g_{y'}(\boldsymbol{x}))} & \text{if } y < K+1, \\ \frac{\exp(g_{K+1}(\boldsymbol{x}))}{\sum_{y'=1}^{K+1} \exp(g_{y'}(\boldsymbol{x})) - \max_{y' \in \mathcal{Y}} \exp(g_{y'}(\boldsymbol{x}))} & \text{otherwise.} \end{cases}$$

Split Conformal Predictor

- distribution-free and finite sample guarantees
- $\hat{\tau}$ is computed as $\frac{\lceil (n+1)(1-\alpha) \rceil}{n}$ quantile of calibration scores \bullet

$$\hat{p}(\mathbf{m} = \mathbf{y}|\mathbf{x}) = \phi_{\text{A-SM}}(g(\boldsymbol{x}), K+1) = \frac{\exp(g_{K+1}(\boldsymbol{x}))}{\sum_{y'=1}^{K+1} \exp(g_{y'}(\boldsymbol{x})) - \max_{y' \in \mathcal{Y}} \exp(g_{y'}(\boldsymbol{x}))}$$

• Non-conformity score for binary classification

$$s(\mathbf{x}, \mathbf{y}, \mathbf{m}; \hat{p}) = \begin{cases} 1 - \hat{p}(\mathbf{m} = \mathbf{y} | \mathbf{x}) & \text{if } \mathbf{m} = \mathbf{y} \\ \hat{p}(\mathbf{m} = \mathbf{y} | \mathbf{x}) & \text{if } \mathbf{m} \neq \mathbf{y} \end{cases}$$

• Given the empirical threshold $\hat{\tau}$, the **deferral set** can be constructed

$$C_r\left(\mathbf{x};\hat{\tau}\right) = \begin{cases} \{0\} & \text{ if } 1 - \hat{p}(\mathbf{m} = \mathbf{y}|\mathbf{x}) \ge 1 - \hat{\tau} \\ \{1\} & \text{ if } \hat{p}(\mathbf{m} = \mathbf{y}|\mathbf{x}) \ge 1 - \hat{\tau} \\ \{0, 1\} & \text{ otherwise} \end{cases}$$

Experiments

- Both OvA and A-SM improve upon the accuracy
- Coverage reduction is variable
- No clear superiority between the parameterizations

Coverage and efficiency of conformal prediction given confidence level $1 - \alpha = 90\%$

Dataset	Param.	Coverage (%)	Avg. Size
CIFAR-10	OvA A-SM	$\begin{array}{c} 86.94 \pm 0.86 \\ 90.53 \pm 0.56 \end{array}$	$\begin{array}{c} 1.07 \pm 0.03 \\ 1.37 \pm 0.01 \end{array}$
HAM10k	OvA A-SM	$\begin{array}{c} 90.65 \pm 0.63 \\ 91.13 \pm 0.58 \end{array}$	$\begin{array}{c} 1.25 \pm 0.01 \\ 1.28 \pm 0.03 \end{array}$
HateSpeech	OvA A-SM	$\begin{array}{c} 90.35 \pm 0.53 \\ 90.67 \pm 0.52 \end{array}$	$\begin{array}{c} 1.03 \pm 0.03 \\ 1.01 \pm 0.01 \end{array}$

L2D with Abstention and Consensus Prediction

	Param.	Method	Sys. Acc.	Ratio Deferred	Sys. Cov.
CIFAR-10	OvA	Base Model	84.71 ± 0.46	55.26 ± 1.76	100
		Abstention	86.72 ± 1.02	56.41 ± 2.30	92.14 ± 0.48
		Consensus	$\textbf{86.79} \pm 1.07$	56.38 ± 2.31	93.32 ± 0.52
	A-SM	Base Model	84.01 ± 0.45	56.63 ± 3.73	100
		Abstention	87.05 ± 0.76	84.13 ± 4.56	62.53 ± 0.75
		Consensus	$\textbf{87.58} \pm 0.61$	$\textbf{79.62} \pm \textbf{4.31}$	67.57 ± 0.75
IAM10k	OvA	Base Model	82.1 ± 0.49	33.71 ± 2.39	100
		Abstention	$\textbf{87.48} \pm 0.51$	35.91 ± 2.84	75.23 ± 1.40
		Consensus	85.72 ± 0.63	34.27 ± 2.52	88.39 ± 1.85
	A-SM	Base Model	78.92 ± 0.29	26.68 ± 3.07	100
		Abstention	$\textbf{87.05} \pm 0.87$	28.11 ± 3.45	72.82 ± 1.19
		Consensus	84.76 ± 0.44	27.49 ± 3.16	84.48 ± 0.95
te Spee	OvA	Base Model	92.09 ± 0.07	42.41 ± 0.99	100
		Abstention	$\textbf{92.28} \pm 0.14$	42.48 ± 0.96	99.38 ± 0.43
		Consensus	92.25 ± 0.13	42.42 ± 0.96	99.78 ± 0.22
	A-SM	Base Model	91.82 ± 0.32	67.91 ± 1.76	100
		Abstention	$\textbf{91.88} \pm 0.15$	67.79 ± 1.74	99.16 ± 0.75
		Consensus	$\textbf{91.88} \pm 0.12$	67.81 ± 1.73	99.65 ± 0.28

At test-time, given a feature vector x_{N+1} , marginal guarantee is \bullet

$$\mathbb{P}\left(\mathsf{y}_{N+1} \in C\left(\mathbf{x}_{N+1}; \tau\right)\right) \ge 1 - \alpha, \text{ for } \alpha \in [0, 1].$$

Prediction set constructed as

$$C(\mathbf{x}_{N+1}) = \{j | f_j(\mathbf{x}_{N+1}) > 1 - \hat{\tau}\}$$

• desired coverage is achieved in practice while also having efficient set sizes

Abstention L2D Decision Making Workflow

Conclusions

- The uncertainty in the rejector translates to safer decisions via • two forms of selective prediction
- · Conformal scoring functions shall be carefully parameterized

Consensus Prediction L2D Decision Making Workflow